

MUNICIPAL POLICIES TO REDUCE GHG EMISSIONS: HOW DO WE KNOW THEY HAVE AN EFFECT?

Morgan Braglewicz September 2017

INTRODUCTION

AGENDA

Overview of analytical tools for planning

CIMS: an energy-economy tool

Case study: Vancouver

Conclusions

TOOLS IN THE PLANNING PROCESS

Objective Policy Outcome

TOOLS IN THE PLANNING PROCESS

TOOLS FOR POLICY EVALUATION

Reduce GHG emissions by 80%

Restrict parking for gasoline cars

Reduced emissions from gasoline car use

TOOLS FOR POLICY EVALUATION

TOOLS FOR POLICY EVALUATION

CIMS: AN ENERGY-ECONOMY TOOL

What is the likely effect of a policy/policy package?

... In terms of:

GHG emissions

Fuel use

Market shares of technologies

How does CIMS do this?

Simulates how people make decisions about energy-using technologies

TECHNOLOGIES IN CIMS

What's in the model?

- Lightbulbs
- Refrigerators
- Vehicles
- Furnaces
- Trains
- Air conditioners
- + dozens more

TECHNOLOGIES IN CIMS

What's in the model?

- Lightbulbs
- Refrigerators
- Vehicles
- Furnaces
- Trains
- Air conditioners
- + dozens more

Market share for a given technology

CIMS

Costs of a given technology

Summed costs of all competing technologies

TECHNOLOGIES IN CIMS

What's in the model?

- Lightbulbs
- Refrigerators
- Vehicles
- Furnaces
- Trains
- Air conditioners
- + dozens more

Market share for electric vehicles

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

Intangible Costs

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

Intangible Costs

Why don't people purchase energy efficient appliances with higher up front costs but lower life cycle costs?

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

Intangible Costs

Why don't people purchase energy efficient appliances with higher up front costs but lower life cycle costs?

CIMS

Discount Rate

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

Intangible Costs

Why don't people purchase energy efficient appliances with higher up front costs but lower life cycle costs?

CIMS

Discount Rate

Why doesn't everyone who drives a 4-door sedan decide to purchase a Honda Civic?

If electric vehicles were cheaper than gasoline cars, would everyone buy electric vehicles?

Intangible Costs

Why don't people purchase energy efficient appliances with higher up front costs but lower life cycle costs?

Discount Rate

Why doesn't everyone who drives a 4-door sedan decide to purchase a Honda Civic?

Market Heterogeneity

Tools Overview Case Study: Vancouver

Tools Overview Case Study: Vancouver

BACKGROUND

2015: Vancouver releases the Renewable City Strategy

- → Goal is to use 100% renewable energy in Vancouver by 2050
- + reduce GHG emissions 80% by 2050

Main sources of emissions:

Gasoline in cars

Natural gas in buildings

KEY QUESTIONS

What policies are needed for Vancouver to achieve 100% renewable energy use?

Is the City's current policy pathway sufficient?

How is the City affected by policy made by the provincial/federal governments?

KEY POLICIES

Municipal:

Vancouver's 2040 Transportation plan
Vehicle parking restrictions
Building Code requirements (new / retrofits)

Provincial/Federal:

Carbon tax Low carbon fuel standard Fuel emissions requirements

Understand how land use and transportation changes affect intangible costs

Model how these changes impact the intangible costs of transportation

CIMS

Use CIMS to evaluate the impact of changes on energy use and GHG emissions

Represent planned land use and transportation changes

Introduction

Case Study:

Case Study: Vancouver

Introduction > 0

Tools Overview

CIMS

Case Study: Vancouver

Conclusions

Legend Transit Stop Intangible Cost

Transit

Case Study: Vancouver

Tools Overview Case Study: Vancouver

Tools Overview Case Study: Vancouver

VANCOUVER: EMISSIONS BY SECTOR

100% Renewable Energy (100RE)

Case Study: Vancouver

VANCOUVER: FUEL USE

Renewable City Strategy (RCS)

100% Renewable Energy (100RE)

Introduction

Case Study: Vancouver

ROLE OF ANALYTICAL TOOLS

Use of a tool demonstrated the type of policies that are needed (standards/regulations, government investment)

Use of a tool demonstrated the level of stringency required for these policies to help Vancouver achieve its target

Use a tool demonstrated the outcomes needed (i.e. fuel switching from gasoline and natural gas to electricity and biofuels)

Use of a tool showed that policy intervention at other levels of government may help, but is **not required** for Vancouver to achieve its goals

APPLYING CIMS TO OTHER COMMUNITIES

Challenges:

- Representing policies for urban form
- Adapting tools for unique local contexts

Opportunities:

- "Truth-testing" for local governments
- Potential to learn from other communities (What works? What doesn't?)
- Giving communities agency to achieve targets in the absence of policy from higher levels of government

Thank you!

Morgan Braglewicz mbraglew@sfu.ca

EXTRA SLIDES

ESTIMATING BEHAVIOURAL PARAMETERS

$$MS_{j} = \frac{\left(CC_{j} \cdot CRF_{j} + OC_{j} + EC_{j} + i_{j}\right)^{-v}}{\sum \left(CC_{k} \cdot CRF_{k} + OC_{k} + EC_{k} + i_{k}\right)^{-v}} \qquad CRF_{j} = \frac{r}{1 - (1 + r)^{-n_{j}}}$$

Three key behavioural parameters:

- Discount rate (r) time preference as reflected in actual decisions, excluding technologyspecific risks
- Intangible cost (i) technology-specific decision factors, especially differences in quality of service and cost risks
- Market heterogeneity (v) reflects the diversity among decision makers in terms of real and perceived costs (logistic curve)

ESTIMATING BEHAVIOURAL PARAMETERS

15 years ago, we began discrete choice surveys to estimate the three behavioral parameters. This included stated and revealed preference studies in:

- transport mode choice (transit, bus, bike, walking, vehicles),
- vehicle choice (efficiency, fuel, motor type)
- industrial boilers and cogeneration,
- commercial and residential building insulation and HVAC.

Increasingly, we focused on cost and non-cost dynamics on technology choices, summarized by "the neighbor effect."

ESTIMATING BEHAVIOURAL PARAMETERS

Standard discrete choice model for technology choice surveys

$$U_{j} = \beta_{j} + \beta_{CC}CC + \beta_{OC}OC + \beta_{EC}EC + e_{j}$$

$$\beta_{AC} = \beta_{OC} + \beta_{EC} \qquad r = \frac{\beta_{CC}}{\beta_{AC}} \qquad i_{j} = \frac{\beta_{j}}{\beta_{AC}}$$

Use OLS to estimate v for which predictions from CIMS are consistent with those from the DCM model (error term size vs betas).

Horne, Jaccard, Tiedemann (2005) "Improving Behavioral Realism in Hybrid Energy-Economy Models Using Discrete Choice Studies of Personal Transportation Decisions," Energy Economics, V27.

SPATIAL MODEL

Tools Overview

Case Study: Vancouver

VANCOUVER: EMISSIONS REDUCTIONS

KEY FINDINGS

More stringent policies than what have been proposed so far are needed to meet the 100% renewables target

Policies must focus on fuel switching in transportation (gasoline) and buildings (natural gas)

Vancouver can come very close to achieving their target without relying on policy intervention from the provincial/federal governments

OVERVIEW: TYPES OF ANALYTICAL AND MODELING TOOLS

Spatial Tools Analyze spatial characteristics of policies and

projects (e.g. land use changes, transportation

infrastructure, district energy)

Engineering Models Plan and assess urban developments and related

services in terms of economics, logistics, etc.

Financial Tools Determine costs and benefits of a project/policy

to a city

Simulation Models Predict the effect of policies on the environment,

economy, social indicators, etc.

GIS (ArcGIS, QGIS)

Plan4DE

RETScreen

City of London CBA

CIMS

CityInSight/GHGProof