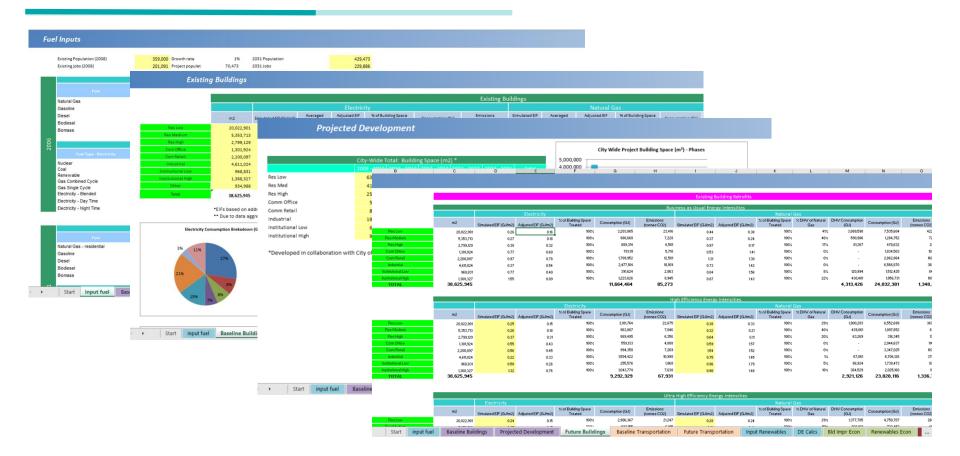


Ontario Cost-Benefit Analysis Tool

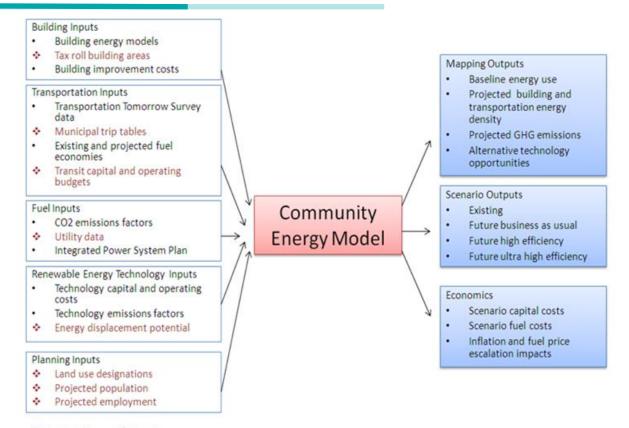
Michael Lee, Lead, Analytics & Services, QUEST

CEKAP - 13 September 2017

BACKGROUND


 Originally developed by the Canadian Urban Institute (CUI) under the Integrated Energy Mapping for Ontario Communities (IEMOC) project in 2011

 Used to predict energy reduction, GHG and ROI of various building and transportation scenarios, and distributed energy resources (DERs) compared to Business-As-Usual


 QUEST Ontario Municipal Working Group to assess the scope of a potential update and assessing level of effort needed

THE COST-BENEFIT ANALYSIS TOOL

THE COST-BENEFIT ANALYSIS TOOL

Municipality specific inputs

THE COST-BENEFIT ANALYSIS TOOL

ENERGY MAPPING PROCESS

Buildings Energy & GHG

- Baseline Analysis (2008)
- Future Development (2031)

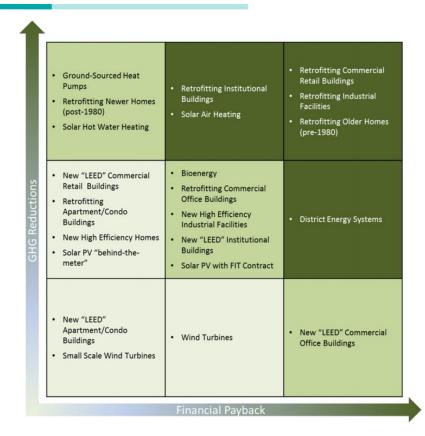
Transportation Energy & GHG

- Baseline Analysis (2008)
- Future Development (2031)

Energy Efficiency Scenarios

- Business as Usual (BAU)
- · High-Efficiency (HE)
- Ultra-High-Efficiency (UHE)

Financial Analysis

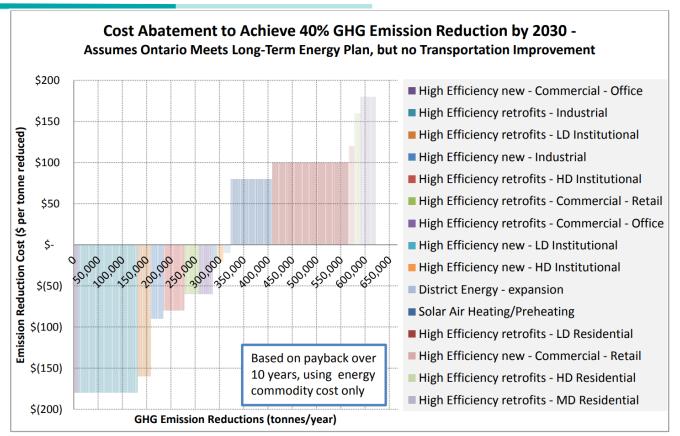

- Capital Cost
- Energy Cost Savings
- Return on Investment
- Payback Period
- Energy Price Sensitivity
- Cost/tonne CO₂ reduced

Energy Generation Technologies

- Wind Power
- Solar Hot Water
- Photovoltaics
- Geoexchange
- District Energy
- Etc.

Energy Efficiency Strategy/Policy Recommendations

APPLICATIONS



APPLICATIONS

Office - New								
E Cost BAU			12.44	13.32	13.56	13.76	14.08	14.3
E Cost HE			7.89	8.38	8.53	8.67	8.86	9.0
E Cost UHE			7.26	7.68	7.82	7.95	8.12	8.2
	CAP	E-	Save					
HE vs BAU	\$	(26.11)	4.55	4.94	5.03	5.10	5.22	5.3
UHE vs BAU	\$	(52.09)	5.18	5.64	5.74	5.82	5.96	6.0
UHE vs HE	\$	(25.98)	0.63	0.70	0.71	0.72	0.74	0.7
	IRR	Pa	yback (Yrs)					
HE vs BAU		20%	4					
UHE vs BAU		11%	8					
UHE vs HE		-3%	-					
Office - Retro Existing								
E Cost BAU			17.60	18.83	19.16	19.45	19.90	20.3
E Cost HE			14.97	16.25	16.53	16.76	17.16	17.5
E Comp LILIE			40.05	10.70	44.00	14.01	44.54	44.0

District Energy - Existin	ıg DT																	
Income																		
Elec Displaced			\$	4,442,268	\$	4,531,113	\$	4,621,735	\$	4,714,170	\$	4,808,453	\$	4,904,622	\$	5,002,715	\$	5,102,7
NG Displaced			\$	1,872,928	\$	2,185,083	\$	2,216,298	\$	2,231,906	\$	2,294,337	\$	2,341,160	\$	2,419,199	\$	2,575,
Elec to Grid			\$	6,225,635	\$	6,350,148	\$	6,477,151	\$	6,606,694	\$	6,738,828	\$	6,873,605	\$	7,011,077	\$	7,151,2
Capital Cost	\$	97,794,376	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Annual Costs																		
O&M			\$	1,635,726	\$	1,668,441	\$	1,701,809	\$	1,735,846	\$	1,770,562	\$	1,805,974	\$	1,842,093	\$	1,878,9
Fuel - Elec			\$	305,907	\$	312,025	\$	318,265	\$	324,631	\$	331,123	\$	337,746	\$	344,501	\$	351,
Fuel - NG			\$	4,367,085	\$	5,094,932	\$	5,167,717	\$	5,204,109	\$	5,349,679	\$	5,458,856	\$	5,640,818	\$	6,004,
Net	\$	(97,794,376.15)	\$	6,232,114	\$	5,990,947	\$	6,127,393	\$	6,288,185	\$	6,390,254	\$	6,516,812	\$	6,605,579	\$	6,594,2
IRR		3.83%																
Biomass																		
Income	_																	
Elec Displaced			\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
NG Displaced			\$		\$	-	\$		\$		\$	-	\$		\$	-	\$	
Elan to Grid			4	19.40	4	19.79	4	20.18	4	20.59	4	21.00	4	21.42	4	21.85	4	22

APPLICATIONS

City of London Understanding the Data: https://www.london.ca/residents/Environment/Energy/Documents/Understanding the Data.pdf

PROPOSED UPDATES

- Updating assumptions
- Update & add new technologies
- Updating user interface for user friendliness
- Re-piloting and updating municipal inputs

NEXT STEPS

1. Stakeholder and consultant outreach

1. Funding opportunity exploration

1. Detailed work plan

DISCUSSION QUESTIONS

1. Are there any similar tools being used in your jurisdiction?

1. Is an open-source approach viable for keeping assumptions relevant?

1. Is a broadly applicable, publicly available model necessary?

QUEST2017

Smart Energy Communities on the Hill

NOVEMBER 6-8 DELTA OTTAWA

MICHAEL LEE

LEAD, ANALYTICS & SERVICES

mlee@questcanada.org